WNE Linear Algebra Final Exam
 Series B

10 March 2016

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.

Let $V=\operatorname{lin}((1,-2,2,1,0),(0,0,1,0,1),(2,-4,5,2,1),(-1,2,-1,-1,1))$ be a subspace of \mathbb{R}^{5}.
a) find dimension of V and a system of linear equations which set of solutions is equal to V,
b) let $w=(-1,2,1, t, 3) \in \mathbb{R}^{5}$. For which $t \in \mathbb{R}$ the subspace $\operatorname{lin}(w)$ is a subset of V, i.e. $\operatorname{lin}(w) \subset V$?

Problem 2.

Let $\alpha_{1}=(0,1,2), \alpha_{2}=(0,1,3), \alpha_{3}=(1,0,1)$ be three vectors in \mathbb{R}^{3}.
a) which of the sequences below are ordered bases of \mathbb{R}^{3} ? give a short explanation in each case
i) $\left(\alpha_{1}, \alpha_{1}-\alpha_{2}, \alpha_{1}-\alpha_{3}, \alpha_{3}\right)$,
ii) $\left(\alpha_{1},-\alpha_{2}, \alpha_{1}+\alpha_{3}\right)$,
iii) $\left(\alpha_{2}, 2 \alpha_{3}\right)$.
b) find coordinates of the vector $-\alpha_{1}+\alpha_{2}+\alpha_{3}$ relative to the ordered basis ($\alpha_{1}, \alpha_{2}+$ $\left.\alpha_{3}, \alpha_{3}\right)$.

Problem 3.

Let $A=\left[\begin{array}{lll}s & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 1 & 0\end{array}\right] \in M(3 \times 3 ; \mathbb{R})$.
a) check if matrix A is diagonalizable for $s=3$,
b) for $s=2$ find matrix $C \in M(3 \times 3 ; \mathbb{R})$ such that $C^{-1} A C=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & b\end{array}\right]$ for some $a, b \in \mathbb{R}$.

Problem 4.

Let $\mathcal{A}=((1,0,1),(0,1,0),(1,0,2))$ be an ordered basis of \mathbb{R}^{3} and let $\mathcal{B}=((0,1),(1,-1))$ and \mathcal{C} be ordered bases of \mathbb{R}^{2}. The linear transformation $\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is given by the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
The basis \mathcal{C} of \mathbb{R}^{2} is given by the matrix $M(i d)_{\mathcal{C}}^{\mathcal{B}}=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$.
a) compute basis \mathcal{C},
b) find formula of φ.

Problem 5.

Let $V=\operatorname{lin}((1,0,-1),(1,1,0),(3,1,-2))$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V^{\perp},
b) compute the orthogonal projection of $w=(0,0,1)$ onto V.

Problem 6.

Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
1 & 0 & r \\
1 & 1 & 1
\end{array}\right]
$$

a) for which $r \in \mathbb{R}$ the matrix A is invertible?,
b) for which $r \in \mathbb{R}$ the entry in the second row and the second column of the matrix A^{-1} is equal to 2 ?

Problem 7.

The affine space $H \subset \mathbb{R}^{3}$ is given by the equation $x_{1}+x_{2}-x_{3}=1$.
a) find a parametrization of the line L perpendicular to H and passing through $P=(1,1,0)$,
b) find the orthogonal projection of P onto H.

Problem 8.a) bring the following linear programming problem to a standard form $x_{2}+x_{3} \longrightarrow \max$

$$
\left\{\begin{array}{c}
-x_{1}+2 x_{2}-x_{3} \geqslant 2 \\
x_{3} \leqslant 1 \\
x_{1}, x_{2} \geqslant 0
\end{array}\right.
$$

b) solve the following linear programming problem using simplex method

$$
x_{1}+2 x_{2} \longrightarrow \min
$$

$$
\left\{\begin{aligned}
x_{1}+x_{2} & \\
-2 x_{1} & =1 \\
2 x_{1} & +x_{3} \\
& =0 \text { x } \\
& =4
\end{aligned} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 4\right.
$$

